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proper numerical models for understanding the physics of
elastic wave propagation and scattering in the more generalNovel formulations for numerical modelling of elastic waves in

block media are developed in this paper. A single differential-differ- block media.
ence equation, which can be discretized to give explicit finite differ- There are several approaches for studying elastic block
ence models of wave propagation in elastic block media, is obtained media numerically. The traditional one is to let the waveafter incorporating continuity conditions of stresses into the equa-

field in the interior of each individual block be computedtion of motion. Further decompositions of the differential-difference
from the discretized homogeneous and isotropic elasticequation also lead to a parallel algorithm for computing the wave

field. Q 1997 Academic Press wave equation of the block. The wave field along any
interface is then computed from the imposition of the conti-
nuity of displacements and stresses, see [9] for example.

1. INTRODUCTION A more general approach treats elastic block media as
inhomogeneous media, see Boore [10], Temple [11, 12],Elastic wave diffraction at multimedia interfaces is an
and Cunha [13], though special care has to be taken atinteresting problem encountered in many different applica-
places where material parameters are discontinuous buttions, including geophysics, seismology, and ultrasonic
stresses have to be continuous. Typically, the discontinu-non-destructive evaluation (NDE). Mathematical models
ities of the material parameters have to be smoothed overin geophysics and seismology often treat large scale regions
some narrow artificial transition zones. The actual smooth-of the earth as multi-layered elastic bodies with wavy inter-
ing is usually done by a simple averaging or blending pro-faces between the layers, see Kelly et al. [1]. In ultrasonic
cess. Additional computational difficulties may arise fromNDE, small scale defects or inhomogeneities are usually
such a treatment. The width of a transition zone is small,of interest, which include voids, inclusions, and cracks.
normally one or two grid spacings only. Thus materialReflections, transmissions, and diffractions due to ultra-
parameters as functions of spatial variables may not besound interaction with defects in the test material carry
accurately discretized, which can affect the overall accu-crucial information about the properties of the material
racy of the numerical model. To overcome this problem,and provide the basis for ultrasonic NDE, see [2–5].
Cunha [13] has tried ‘‘long’’ and ‘‘short’’ operators onAny complicated elastic space can be approximated by
displacements and material parameters separately to mini-discrete polygonal elastic sub-spaces (blocks). This might
mize the effect of discontinuities in material parameters.include many problems of practical interest such as elastic
In their recent paper, Zahradnı́k and Priolo [14] have usedwave scattering from regularly shaped inhomogeneities
the Dirac delta function and Heaviside’s step function toand propagation in stratified media. Curved interfaces can
explicitly describe the wave motion and continuity condi-also be approximated as a series of rectilinear steps. A
tions in elastic block media in one single differential equa-modelling approach which is based on discretization of the
tion. This new differential equation is then discretized glob-computational space into blocks renders itself amenable
ally for numerical computations.to numerical solutions using a method such as finite differ-

In this study, we consider elastic media composed ofences, see Harker [6].
rectangular blocks also in a global manner. A series ofThe interface between two homogeneous solid half-
generalized equations of motion will be developed withspaces provides the simplest example of an interface prob-
continuity conditions across interfaces automatically incor-lem in elastic block media. Analytical solutions often exist
porated. We give a detailed derivation and analysis of thefor such cases, see [7, 8]. The problem of elastic wave
generalized equation of motion along horizontal interfacespropagation in more general block media, however, is
and list the analogies for vertical and vertex interfaces.much more difficult to solve. There are no complete analyt-

ical solutions available. It is therefore necessary to have Neighbouring blocks do not have to be all distinct. Thus,
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each point in space can be treated as a vertex interface and l and e are constants, we have by the definition of
the = operator,be associated with a single differential-difference equation

that unifies the treatment for interior body nodes, hori-
zontal and vertical interface nodes, and four-media inter-
face vertex nodes in block media. This single differential- rutt 5Fl 1 2e 0

0 e
Guxx 1F 0 l 1 e

l 1 e 0
Guxz

(5)
difference equation approximates a combination of the
equation of motion and the continuity constraint on
stresses. The order of approximation can be arbitrarily

1Fe 0

0 l 1 2e
Guzz ,

prescribed. For simplicity, we restrict ourselves to two-
dimensional linear time-dependent elasticity and the waves
considered in our numerical examples are plane waves. as the differential equation of motion.
However, much of the mathematics can be extended to When (x, z) is situated on an interface of dissimilar
three-dimensional situations. materials, there is no longer a unique differential form of

the equation of motion corresponding to the integral one.
The material density and elastic parameters are now dis-

2. INTEGRAL AND DIFFERENTIAL EQUATIONS OF continuous. As uVu goes to zero, the limit of the integral
MOTION IN ELASTIC MEDIA equation (1) will depend on the geometry of V. Moreover,

the continuities of displacements and stresses that are auto-
Denote (x, z) as the point of interest in space and matically satisfied for homogeneous and isotropic media

u 5 u(x, z, t) as the displacement vector at the point. For will now have to be further imposed in addition to the
continuity of the displacement field, there should be only equation of motion for general elastic media that support
one vector value associated with a point in space at any continuous motion.
time t. Then the integral form of the equation of motion Consider now the elastic media where the elastic param-
without body forces is eters are piecewise constants. Block media are typical ex-

amples of such piecewise homogeneous and isotropic elas-
tic media. For an interface point (x, z), the volume V in1

uVu EV
rutt dV 5

1
uVu E­V

Tn̂ dS, (1)
(1) that contains (x, z) is a union of several sub-volumes
Vi . Within each of these sub-volumes, the density and the

where for T being the stress tensor, Tn̂ 5 T · n̂ is the stress elastic parameters are constants. Let us use superscript i for
vector in the direction of the unit outward normal n̂ and vectors and subscript i for scalars and volumes to indicate
r is the material density. Also in the above equation, V is values associated with the sub-volume Vi , for example, ri ,
an arbitrary volume in space that contains the point (x, z), li , and ui

xz . Then the integral equation of motion (1) be-
­V the boundary surface of V and uVu the volume of V. comes

For continuous media, a unique differential form of the
equation of motion O

i

uViu
uVu

1
uViu

E
Vi

ri utt dV 5 O
i

uViu
uVu

1
uViu

E
­Vi

Tn̂ dS, (6)

rutt 5 = · T (2)
since the normal component of the stress tensor T is contin-

is obtained when uVu goes to zero. By Hook’s law, the uous across any interface and the unit outward normal
stresses can be expressed as vectors paired on the common surface of two adjacent sub-

volumes are opposite to each other. Thus by choosing V
such that uViu/uVu R wi as uVu R 0, we derive from (6)

Tx̂ 5FTxx

Txz
G5Fl 1 2e 0

0 e
Gux 1F0 l

e 0
Guz (3)

O
i

wiriutt 5 O
i

wi 53li 1 2ei 0

0 ei4ui
xx

(7)and

1 3 0 li 1 ei

li 1 ei 0 4ui
xz 1 3ei 0

0 li 1 2ei4ui
zz6,Tẑ 5FTxz

Tzz
G5F0 e

l 0
Gux 1Fe 0

0 l 1 2e
Guz , (4)

where x̂ and ẑ are the unit directional vectors for the after letting uVu go to zero. The continuity of displacements
is in general satisfied implicitly by the definition of a singlex and z axes and l and e are the elastic parameters of

isotropic media. If the media are also homogeneous where u(x, z, t) vector at the point (x, z) for all t. There is thus
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no need to use superscript i for ui
tt on the left hand side The following formulae are obtained with successive

Taylor expansionsof (6) and (7).
As a generalization of (5), Eq. (7) is a differential form

of the equation of motion at a multimedia interface vertex.
uxx 5 Gx

l [hx]u 2
gl

hx
ux 1 O(hl

x),
(8)

It is in fact a weighted average of the elastic wave equations
(5) for each medium at that vertex. The weights are not
unique as we have commented before. In the next section, uzz 5 Gz

l [hz]u 2
gl

hz
uz 1 O(hl

z),
we shall demonstrate how these weights can actually be
appropriately assigned so that stress-continuity conditions
at interface points are incorporated with elastic wave equa- with one-sided difference operators Gx

l [hx] and Gz
l [hz] de-

tions to form a class of generalized equation of motion fined by
that can be easily implemented in the numerical modelling
of wave propagations in elastic block media.

Gx
l [hx]u(x, z, t) 5

2
h2

x
Ol

k50
al,ku(x 1 khx , z, t), (9)

3. GENERALIZED EQUATION OF MOTION FOR and
INTERFACES IN BLOCK MEDIA

We have in the last section established a differential Gz
l [hz]u(x, z, t) 5

2
h2

z
Ol

k50
al,ku(x, z 1 khz , t). (10)

form of the equation of motion at a multimedia interface
vertex. A necessary condition for the development of Eq.

The coefficients in the above expressions are given by(7) is that the component of stress tensor T normal to any
interface surface is continuous. This necessary condition
is also a constraint for continuous motion and hence has

gl 5 Ol

i51

2
i
, al,0 5 Ol

k51
S l

k
D (21)k

k2 ,

(11)
to be reflected in any numerical implementations of the
equation of motion (7). We limit ourselves to the finite
difference implementations in the current study. For this

al,k 5 S l

k
D (21)k11

k2 , k 5 1, ..., l.purpose, we shall develop in this section a class of differen-
tial-difference equations as generalized equations of mo-
tion for interface points. We begin by examining the derivation of the new com-

There are three types of interfaces in rectangular block posed stress-free boundary condition of Ilan and Loewen-
media. A horizontal interface is described by z 5 const, thal [18]. Let z 5 (z0)1 be a stress-free surface that bounds
a vertical interface is by x 5 const, and a four-media the solid occupying z $ z0 . Instead of using
vertex interface is the intersection of a horizontal inter-
face and a vertical interface with each quarter being
occupied by one homogeneous and isotropic medium. It F0 e

l 0
Gux 1 Fe 0

0 l 1 2e
Guz 5 0

should be noted that the four media do not have to be
all distinct.

to describe the stress-free boundary, see (4), Ilan andThe discontinuity of the derivatives of u across an inter-
Loewenthal constructed a boundary condition based on aface implies that higher order cross-boundary derivatives
composition of the above equation and the elastic waveare more difficult to discretize and to compute. It then
equation (5). By writingjustifies the need for alternative expressions for the second

order derivatives in (7). Motivated by the new composed
u(x, z0 1 hz , t) 5 u 1 hzuz 1 (h2

z/2)uzz ,stress-free conditions of Ilan and Loewenthal [18] and by
the observation that some of the matrix coefficients in the

they derivedequation of motion and in the expression of stress vectors
are the same, see (3), (4), (5), and (7), we approximate
the second order cross-boundary derivatives of u with finite Fe 0

0 l 1 2e
Guzz 5 Fe 0

0 l 1 2e
GGz

1[h]u 1
2
h F0 e

l 0
Gux

differences and first order derivatives. The first order deriv-
ative terms can then be used to combine the stress continu-

where from Eqs. (8), (10), and (11),ity constraints with the wave equation (7) to form a single
differential-difference equation which will be further dis-
cretized to give finite difference schemes at interface Gz

1[h] u(x, z0 , t) 5
2
h2 (u(x, z0 1 h, t) 2 u(z, z0 , t)).

points.
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This expression for uzz was then used to replace the uzz and
term in the wave equation (5) to produce the new com-
posed stress-free condition Fe2 0

0 l2 1 2e2
G u2

zz 5Fe2 0

0 l2 1 2e2
GGz

l [2hz2]u

(15)
rutt 5 Fl 1 2e 0

0 e
Guxx 1 F 0 l 1 e

l 1 e 0
Guxz

(12)
2

gl

hz2
F 0 e2

l2 0
G ux 1

gl

hz2
T 2

ẑ 1 O(hl
z2).

1 Fe 0

0 l 1 2e
GGz

1[h]u 1
2
h F0 e

l 0
Gux .

In order to avoid tediousness, we only describe the devel- The generalized equation of motion for a horizontal inter-
opment of the generalized equation of motion for a hori- face is then derived by substituting the above two equations
zontal interface in detail. A simple analogy will be applied into (13),
for a vertical interface. Outlines of the development of the
generalized equation of motion for a vertex interface will

0 5 Lhu 5 2uttbe summarized with the list of final equations.
Suppose that (x, z) is lying on the horizontal interface

between medium 1 and medium 2 that are described by 1 c1HFl1 1 2e1 0

0 e1
Guxx 1F 0 l1 1 e1

l1 1 e1 0
Gu1

xz
z9 $ z and z9 # z, respectively. Then the equation of
motion (7) in this particular case becomes

1Fe1 0

0 l1 1 2e1
GGz

l [hz1]u 1
gl

hz1

F 0 e1

l1 0
GuxJ (16)0 5 Lu 5 2utt

1
w1

w1r1 1 w2r2 53l1 1 2e1 0

0 e1
4u1

xx 1 3 0 l1 1 e1

l1 1 e1 0 4u1
xz

1 c2HFl2 1 2e2 0

0 e2
Guxx 1F 0 l2 1 e2

l2 1 e2 0
Gu2

xz

1 3e1 0

0 l1 1 2e1
4u1

zz61
w2

w1r1 1 w2r2 53l2 1 2e2 0

0 e2
4u2

xx 1Fe2 0

0 l2 1 2e2
GGz

l [2hz2]u 2
gl

hz2
F 0 e2

l2 0
GuxJ,

1 3 0 l2 1 e2

l2 1 e2 0 4u2
xz 1 3e2 0

0 l2 1 2e2
4u2

zz6. (13) where we assumed T 1
ẑ 5 T 2

ẑ and

Denote the vertical grid spacings for finite differences c1 5
hz1

hz1r1 1 hz2r2
, c2 5

hz2

hz1r1 1 hz2r2
. (17)

as hz1 in medium 1 and hz2 in medium 2 with h 5 (hz1 ,
hz2). We may then let w1/hz1 5 w2/hz2 , which can be
achieved, for example, by choosing Note that we have dropped superscripts on u, ux , and uxx

terms because of the continuity of displacements. The error
V1 5 V1(r) 5 [x 2 ra, x 1 ra] 3 [z, z 1 rhz1] term omitted in (16) is O(hl

z1 1 hl
z2) or O(hl) for short. In

practice, the order of approximation l from differential-
and difference equation (16) to the differential equation of

motion (13) is chosen as either 1 or 2 with continuous
V2 5 V2(r) 5 [x 2 ra, x 1 ra] 3 [z 2 rhz2 , z] stresses.

We now discuss the conditional consistency of (16) with
for r R 0. Here a . 0 is arbitrary and the interface is

the original stress-continuity conditionaligned to a grid line. We also use (4) to rewrite (8) as

T1
ẑ(x, z, t) 5 T2

ẑ(x, z, t) (18)Fe1 0

0 l1 1 2e1
G u1

zz 5Fe1 0

0 l1 1 2e1
GGz

l [hz1]u

(14) and with wave equation (13). Let uh be the approximate
displacement field that satisfies (16), that is, Lhuh 5 0, and
denote T1,h

ẑ and T 2,h
ẑ as the approximate stresses normal to1

gl

hz1
F 0 e1

l1 0
G ux 2

gl

hz1
T 1

ẑ 1 O(hl
z1)

the horizontal interface that are computed in medium 1
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and medium 2, respectively. A simple algebraic process Let us now consider a vertical interface point. Suppose
that (x, z) is lying on the interface between medium 1then leads to
and medium 2 that are described by x9 $ x and x9 # x,
respectively. As an analogy to the case of a horizontal2Luh 5 Lhuh 2 Luh

(19) interface, we immediately derive the following generalized
equation of motion for a vertical interface5

gl

hz1r1 1 hz2r2
(T 1,h

ẑ 2 T 2,h
ẑ ) 1 O(hl).

Thus if we assume that uh has uniformly bounded second
utt 5 c1HFl1 1 2e1 0

0 e1
GG x

l [hx1]u 1
gl

hx1
F 0 l1

e1 0
Guzderivatives for h R 0, then

lim
hR0

(T 1,h
ẑ 2 T 2,h

ẑ ) 5 0, (20)
1F 0 l1 1 e1

l1 1 e1 0
Gu1

xz 1Fe1 0

0 l1 1 2e1
GuzzJ

(24)which implies the consistency with the original stress conti-
nuity condition (18). Further assuming T 1,h

ẑ 2 T 2,h
ẑ R 0 at

1 c2HFl2 1 2e2 0

0 e2
GG x

l [2hx2]u 2
gl

hx2
F 0 l2

e2 0
Guza faster rate such that

T 1,h
ẑ 2 T 2,h

ẑ 5 o(h), (21)
1F 0 l2 1 e2

l2 1 e2 0
Gu2

xz 1Fe2 0

0 l2 1 2e2
GuzzJ

then we have

lim
hR0

L uh 5 0, (22) by substituting

which implies the consistency with wave equation (13).
The above discussion shows that our generalized equa- Fl1 1 2e1 0

0 e1
Gu1

xx 5Fl1 1 2e1 0

0 e1
GG x

l [hx1]u

(25)
tion of motion (16) is a neat combination of the wave
equation and the constraints of stresses at interface points
for continuous elastic media. Stress-continuity constraints

1
gl

hx1
F 0 l1

e1 0
G uz 2

gl

hx1
T 1

x̂ 1 O(hl
1)are more dominant in (16) since (20) holds under mild

assumptions. For finite difference modelling, Eq. (16)
should mix well with the wave equation (5) in the two
homogeneous and isotropic media that form the horizontal and
interface in the sense that (16) reduces to an approximation
of (5) with uzz replaced by a finite difference if the two
media are the same. Fl2 1 2e2 0

0 e2
G u2

zz 5Fl2 1 2e2 0

0 e2
GGx

l [2hx2] u

(26)

Before moving on to other types of interfaces, we point
out that stress-free conditions are actually included in (16)
although the analysis is for stress-continuity conditions. If
one of the two adjacent media, medium 2 say, is vacuum, 2

gl

hx2
F 0 l2

e2 0
G uz 1

gl

hx2
T 2

x̂ 1 O(hl
2)

then r2 5 0, l2 5 0, and e2 5 0. Equation (16) degener-
ates to

into (7). The coefficients c1 and c2 in (24) are given by
(17), but with hz1 and hz2 replaced by hx1 and hx2 , respec-

utt 5Fa2
1 0

0 b2
1
Guxx 1F 0 a2

1 2 b2
1

a2
1 2 b2

1 0
Guxz tively.

Finally, we examine the situation of a four-media vertex
interface. Let (x, z) be such a vertex and the first of the
four homogeneous and isotropic media be bounded by1Fb2

1 0

0 a2
1
GG z

l [hz1]u 1
gl

hz1
F 0 b2

1

a2
1 2 2b2

1 0
Gux ,

(23)

x9 $ x and z9 $ z, the second by x9 $ x and z9 # z, the
third by x9 # x and z9 # z, and the fourth by x9 # x and
z9 $ z. We also assume that the grid spacings for finitewhich becomes the new composed stress-free condition

due to Ilan and Loewenthal [18] for l 5 1, see (12). Here differences are h1 5 hz1 for z9 . z, h2 5 hx1 for x9 . x,
h3 5 hz2 for z9 , z, and h4 5 hx2 for x9 , x.we have used l1 5 r1(a2

1 2 2b2
1) and e1 5 r1b2

1 .
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We choose wi 5 hihi11/(h1 1 h3) (h2 1 h4), for 1 # i # approximations, we derive the generalized equation of mo-
tion for a vertex interface4, with h5 interpreted as h1 . It can be achieved by letting

V1 5 V1(r) 5 [x, x 1 rhx1] 3 [z, z 1 rhz1]

utt 5 c1HFl1 1 2e1 0

0 e1
GGx

l [hx1]u1 1
gl

hx1
F 0 l1

e1 0
Gu1

z5 [x, x 1 rh2] 3 [z, z 1 rh1],

V2 5 V2(r) 5 [x, x 1 rhx1] 3 [z 2 rhz2 , z]

5 [x, x 1 rh2] 3 [z 2 rh3 , z], 1Fe1 0

0 l1 1 2e1
GGz

l [hz1]u1 1
gl

hz1
F 0 e1

l1 0
Gu1

xJ
V3 5 V3(r) 5 [x 2 rhx2 , x] 3 [z 2 rhz2 , z]

5 [x 2 rh4 , x] 3 [z 2 rh3 , z],
1 c2HFl2 1 2e2 0

0 e2
GGx

l [hx1]u2 1
gl

hx1
F 0 l2

e2 0
Gu2

zand

V4 5 V4(r) 5 [x 2 rhx2 , x] 3 [z, z 1 rhz1]
1Fe2 0

0 l2 1 2e2
GGz

l [2hz2]u2 2
gl

hz2
F 0 e2

l2 0
Gu2

xJ
5 [x 2 rh4 , x] 3 [z, z 1 rh1],

for r R 0. The equation of motion (7) in this case becomes 1 c3HFl3 1 2e3 0

0 e3
GGx

l [2hx2]u3 2
gl

hx2
F 0 l3

e3 0
Gu3

z (29)

utt 5 c1HFl1 1 2e1 0

0 e1
Gu1

xx 1F 0 l1 1 e1

l1 1 e1 0
Gu1

xz 1Fe3 0

0 l3 1 2e3
GGz

l [2hz2]u3 2
gl

hz2
F 0 e3

l3 0
Gu3

xJ
1Fe1 0

0 l1 1 2e1
Gu1

zzJ1 c2HFl2 1 2e2 0

0 e2
Gu2

xx 1 c4HFl4 1 2e4 0

0 e4
GGx

l [2hx2]u4 2
gl

hx2
F 0 l4

e4 0
Gu4

z

1F 0 l2 1 e2

l2 1 e2 0
Gu2

xz 1Fe2 0

0 l2 1 2e2
Gu2

zzJ
(27)

1Fe4 0

0 l4 1 2e4
GGz

l [hz1]u4 1
gl

hz1
F 0 e4

l4 0
Gu4

xJ
1 c3HFl3 1 2e3 0

0 e3
Gu3

xx 1F 0 l3 1 e3

l3 1 e3 0
Gu3

xz 1 O4
i51

ciF 0 li 1 ei

li 1 ei 0
Gui

xz .

1Fe3 0

0 l3 1 2e3
Gu3

zzJ1 c4HFl4 1 2e4 0

0 l4
Gu4

xx
The four media meeting at the vertex (x, z) do not have

to be all different. Various combinations of blocks with
similar and dissimilar materials lead to many interesting

1F 0 l4 1 e4

l4 1 e4 0
Gu4

xz 1Fe4 0

0 l4 1 2e4
Gu4

zzJ, interface situations. We list some common ones here. If
all four blocks associated with (x, z) are of the same mate-
rial, (29) reduces to (5) with second order derivatives uxx

where and uzz discretized as finite differences. If the four blocks
are paired so that medium 1 and medium 4 are the same
and so are medium 2 and medium 3, then (29) reduces toci 5

hihi11

h1h2r1 1 h2h3r2 1 h3h4r3 1 h4h1r4
, i 5 1, 2, 3, 4.

(16) with uxx discretized. With one/three of the four media
(28) becoming vacuum, we obtain conditions for 2708/908 stress-

free corners that Alterman and Loewenthal [9] had stud-
ied. In fact for finite-difference modelling, we may useSecond order cross-boundary derivatives uxx and uzz in (27)
(29) as a unified governing equation for elastic waves incan be approximated as before by a combination of lower
block media.order terms. The choice of wi 5 hihi11/(h1 1 h3) (h2 1 h4),

enables us to incorporate stress-continuity constraints into It is possible to extend our approach further and thus
allow more degrees of freedom in the final differential-(27) through the approximation. After replacing all second

order cross-boundary derivatives with lower order term difference formulation. For example, we may use
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andFe1 0

0 l1 1 2e1
G u1

zz 5 sFe1 0

0 l1 1 2e1
GG z

l [h1]u1

Fxz(x, z) 5
1

4hxhz
h4F(x 1 hx , z 1 hz) 2 4F(x 2 hx , z 1 hz)

1 s(d 2 1)
gl

h1
Fe1 0

0 l1 1 2e1
Gu1

z (30) 2 F(x 1 hx , z 1 2hz) 1 F(x 2 hx , z 1 2hz)

2 3F(x 1 hx , z) 1 3F(x 2 hx , z)]j 1 O(h2
x 1 h2

z)

1 sd
gl

h1
F 0 e1

l1 0
Gu1

x 1 (1 2 s)Fe1 0

0 l1 1 2e1
Gu1

zz 5
1

2hxhz
h25F(x 1 hx , z) 2 5F(x, z 1 hz) (33)

2 F(x 1 2hx , z 1 hz) 2 F(x 1 hx , z 1 2hz)2 sd
gl

h1
T 1

ẑ 1 O(hl
1)

1 4F(x, z) 1 F(x 1 2hx , z) 1 6F(x 1 hx , z 1 hz)

1 F(x, z 1 2hz)j 1 O(h2
x 1 h2

z).
instead of (14) and similar alternative expressions to ma-
nipulate second order cross-boundary derivative terms. Each of the derivative terms in the unified governing equa-
The parameters s and d are useful for balancing the domi- tion for elastic waves (29) can now be approximated in a
nance of wave equations and stress constraints in the final conventional manner by a finite difference by using the
formulation. They may also be adjusted to improve the above expressions with the overall accuracy being second
stability of finite difference schemes that are constructed order. For example, one may substitute u2

zz(x, z, t) 5
from the differential-difference formulation. uzz(x 1, z 2, t) with any of the right hand sides of (32) by

regarding z as the variable x in (32) and by letting h 5
2hz2 . Denote ui, j,k 5 u(x0 1 ihx , z0 1 jhz , t0 1 kht). We
obtain from (29),4. NUMERICAL IMPLEMENTATION AND EXAMPLES

For finite difference modelling, equations like (29) have ui, j,k11 5 2ui, j,k 2 ui, j,k21 1 h2
t Pi, j,k(u) (34)

to be further discretized. All derivative terms should be
approximated by finite differences to appropriate orders for calculating the wave field by forward iterations in time
of accuracy in accordance with the value of l that has been with Pi,j,k(u) representing the finite difference approxima-
specified for differential-difference equations (16), (24), tion of the right hand side of (29) at the point referenced
and (29). We fix l 5 2 because second order methods are as (x0 1 ihx , z0 1 jhz) for time level k.
sufficient for our applications. Higher order schemes can The grid spacings in our finite difference formulation
be achieved for larger l. are also required to satisfy

Formulas of finite difference approximations used to
develop our second order finite difference model are

ht # minH hxhz

Ïa2h2
x 1 b2h2

z

,
hxhz

Ïa2h2
z 1 b2h2

x
J, (35)

f 9(x) 5
1

12h
h8f (x 1 h) 2 8f (x 2 h) 2 f (x 1 2h)

where a and b are the compressional and shear velocities
of the media, following the stability analysis of Alterman1 f (x 2 2h)j 1 O(h4) 5

1
6h

h211f (x)
and Loewenthal [9] on an infinite homogeneous domain.

Along the sides of the rectangular computational do-1 18f(x 1 h) 2 9f (x 1 2h) 1 2f (x 1 3h)j
main, particular second order absorbing boundary condi-
tions of Zhou and Saffari [15] are deployed. As shown in1 O(h3) 5

1
6h

h22f (x 2 h) 2 3f (x) 1 6f (x 1 h)
[15], these absorbing boundary conditions work for a wide
range of incidences for both compressional and shear inci-2 f (x 1 2h)j 1 O(h3), (31)
dent waves. Although an often negligibly small distortion
may result in the numerical solution, the introduction off 0(x) 5

1
h2 hf (x 1 h) 2 2f (x) 1 f (x 2 h)j 1 O(h2)

artificial absorbing boundaries enables us to choose smaller
computational domains sufficiently covering the area of

5
1
h2 h2f (x) 2 5f (x 1 h) 1 4f (x 1 2h) interest, for more efficient and speedy numerical solutions.

We wish to show three examples here. The first has a
half space of gold perfectly bonded on top of a half space2 f (x 1 3h)j 1 O(h2), (32)
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of aluminium. A compressional vertical pulse wave travels
upwards from the lower half space of aluminium across
the interface to the upper half space of gold. An analytical
solution is given by

u(x, z, t) 5 Hf(z 1 aat)q(1) 1 Rf(2z 1 aat)q(21), z $ 0

Tf((aa/ag)z 1 aat)q(aa/ag), z # 0
(36)

in terms of a potential function f where

q(h) 5F0

h
G, R 5

agrg 2 aara

agrg 1 aara
, T 5

2agra

agrg 1 aara
.

(37)

Here, subscripts a and g are used to indicate material
parameters of aluminium and gold, respectively. Thus, FIG. 1. Magnitude of the incident pulse and the reflection.
aa 5 6398 m/sec, ba 5 3122 m/sec, ra 5 2700 Kg/m3, and
ag 5 3240 m/sec, bg 5 1200 m/sec, rg 5 19300 Kg/m3. The
computational domain is uniformly discretized with the

analytical solution, see Figs. 1 and 2. Magnitudes of errorsinterface aligned with the central horizontal grid line. The
are small for both first and second order implementationsgrid spacings are set to
due to the simplicity of the problem. Overall, the l2-norm
of errors of the second order scheme over the five hundred

hx 5 hz 5
aa

48f
, ht 5 0.9

hx

Ïa2
a 1 b2

a

time levels is 9% smaller than that of the first order scheme.
The second example is about a particular inverse mate-

rial inclusion. We examine two perfectly bonded small
with an operating frequency of f 5 1 MHz assumed, which blocks (aluminium on top of gold) embedded along the
implies that there are about 20 nodes per wavelength. We interface of two otherwise perfectly bonded half-spaces of
also let the potential function f(j) be taken as the smooth solids (gold on top of aluminium), see Fig. 3. These two
d-shaped function materials have been chosen because they provide a large

acoustic mismatch as well as two very different b/a ratios.
kd(j)l

5

(j 15D)4
1 2 5(j 1 3D)4

1 1 10(j 1 D)4
1 2 10(j 2 D)4

1

1 5(j 2 3D)4
1 2 (j 2 5D)4

1

5520D

with D 5 7hx , see Ilan et al. [16]. We compute the numerical
results of the displacement field with the horizontal inter-
face implemented as either a first order or a second order
scheme of the generalized equation of motion (16). The
first order scheme is essentially the new composed condi-
tion of [17, 18]. The computational domain consists of 240
grids horizontally and 160 grids vertically. For testing the
stability of these finite difference schemes of the general-
ized equation of motion for a horizontal interface, we im-
pose periodic boundary conditions on the two vertical
boundaries of the computational domain. The vertical
components of displacement at points, fifty grid spacings
away from the interface on either side, are recorded for
five hundred time levels. The numerical results are then
compared with the analytical solution. Both sets of numeri-

FIG. 2. Magnitude of the transmission.cal results are found to be in excellent agreement with the
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FIG. 5. Displacement field at t 5 t0 1 90h, for inverse material in-FIG. 3. Displacement field at t 5 t0 for inverse material inclusion.
clusion.

All interfaces are assumed to be perfect bonds. Figure 3
shows the displacement field at the initial time level t 5 and 10 show the displacement field at the initial time level
t0 . A compressional vertical pulse is travelling upwards t 5 t0 and at the time level t 5 t0 1 175 Dt.
before hitting the inclusions. The displacement fields at A full stability analysis for our new block media formula-
the time level t 5 t0 1 40ht , t 5 t0 1 90ht , t 5 t0 1 135ht , tion is not yet available. However, the above examples
t 5 t0 1 200ht , and t 5 t0 1 300ht are displayed in Figs. have demonstrated strongly that it does provide stable
4–8. The scattering caused by interactions at interfaces of numerical calculation.
dissimilar materials are well simulated using the general-
ized equations of motion (16), (24), and (29) with a second
order implementation. 5. A PARALLEL ALGORITHM

In the third example, we consider a uniform distribution
of perfect cracks perpendicular to the interface between An alternative approach to the finite difference model-
aluminium and gold half-spaces, see Fig. 9. Each of the ling is obtained after careful observations of our newly
cracks consists of two closed stress-free surfaces. The nor- established generalized equations of motion for interfaces.
mal stress vector along the crack is zero and is thus continu- It is easily seen that Eq. (29) can be regarded as a weighted
ous. The displacement vector is allowed to differ on the average of four stress-free corner conditions with h1 h2 r1 ,
two sides of a crack and hence may be discontinuous across h2 h3 r2 , h3 h4 r3 , and h4 h1 r4 as the weights. The four stress-
the crack. We apply to both crack faces the stress-free free corner conditions are those obtained from (29) when
conditions that are derived from (29) by assuming either three of the four media become vacuum. For example,
media 1 and 2 or media 3 and 4 being vacuum. Figures 9

FIG. 6. Displacement field at t 5 t0 1 135ht for inverse material in-FIG. 4. Displacement field at t 5 t0 1 40ht for inverse material in-
clusion.clusion.
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FIG. 7. Displacement field at t 5 t0 1 200ht for inverse material in- FIG. 9. Displacement field at t 5 t0 for a distribution of vertical cracks.
clusion.

Suppose that we have computed ui, j,1 up to ui, j,k , for all
i and j, and are now calculating ui, j,k11 . To go from level

utt 5Fa2
2 0

0 b2
2
GGx

l [h2]u2 1
gl

h2
F 0 a2

2 2 2b2
2

b2
2 0

Gu2
z k to level k 1 1, the original problem can be divided into

many sub-problems. Each sub-problem corresponds to one
homogeneous and isotropic block. Within the block, elastic
wave equation (5) with appropriate parameters is imposed.1Fb2

2 0

0 a2
2
GGz

l [2h3]u2 2
gl

h3
F 0 b2

2

a2
2 2 2b2

2 0
Gu2

x

On the boundary of the block, horizontal, vertical, and
corner stress-free conditions based on our generalized
equations of motion are also used. All sub-problems are

1F 0 a2
2 1 b2

2

a2
i 1 b2

i 0
Gu2

xz (38)
discretized for forward iterations in time, using central
differences whenever possible. Then ui, j,k11 can be calcu-
lated by forward iterations using finite difference schemesfor the corner that is defined by x9 $ x and z9 # z. Similarly,
for sub-problems. The values at interior nodes of sub-Eq. (16) is the weighted average of two horizontal stress-
problems are final. For a node on a common boundary offree conditions, and (24) the weighted average of two verti-
two or more sub-problems, the final value at that node iscal stress-free conditions. Thus forward iteration schemes
obtained as a weighted average of the values of individuallike (34) can be implemented via sub-problems based on
sub-problems. As an illustration, we consider the situationeach individual homogeneous and isotropic block with
described in Section 3 for a interface vertex, see Fig. 11.horizontal and vertical stress-free surfaces and stress-free
Let us identify block 1 with sub-problem 1, block 2 withcorner vertices. We give details below.

FIG. 8. Displacement field at t 5 t0 1 300ht for inverse material in- FIG. 10. Displacement field at t 5 t0 1 175ht for a distribution of
vertical cracks.clusion.
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Another important feature of the new block media for-
mulation is that it effectively provides a parallel computer
algorithm for computing the wave field.

One drawback of the present differential-difference for-
mulation is that it requires a material discontinuity to be
aligned with a grid line and not to lie generally between grid
lines. The use of non-uniform discretization may provide a
possible remedy if the grid spacings are adjusted to enforce
the alignment.

The formulation is at the moment designed for a rather
restrictive class of block media where all blocks after an
appropriate subdivision are rectangular. Further work is
needed to fully exploit the potential of its application in
elastic wave propagation problems. An extension is possi-
ble for interfaces separating the media with smooth veloc-
ity and density variations. We also intend to extend our

FIG. 11. Interfaces in rectangular block media. result for more general elastic block media composed of
polygonal blocks so as to tackle problems involving wavy
interfaces or composites, which contain essentially circularsub-problem 2, and so on. Let us also denote u[m]

i, j,k11 as the
inclusions. Extension to 3D applications is also planned.wave field values of sub-problem m for the new time level.
We believe the results with rectangular blocks in 2D areThen if a point (x0 1 ihx , z0 1 jhz) is on the horizontal
already very encouraging.interface between block 1 and block 2, the final value for

the new time level at that point becomes
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